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The stability and accuracy of finite-difference approximations to simple linear partial 
differential equations are analyzed by studying the modified partial differential equation. 
Aside from round-off error, the modified equation represents the actual partial differential 
equation solved when a numerical solution is computed using a finite-difference equation. 
The modified equation is derived by first expanding each term of a difference scheme 
in a Taylor series and then eliminating time derivatives higher than Crst order by the 
algebraic manipulations described herein. The connection between “heuristic” stability 
theory based on the modified equation approach and the von Neumann (Fourier) method 
is established. In addition to the determination of necessary and sufficient conditions 
for computational stability, a truncated version of the modified equation can be used 
to gain insight into the nature of both dissipative and dispersive errors. 

INTRODUCTION 

This paper describes a technique for evaluating various qualities or properties 
of a finite-difference analogue of a given partial differential equation. These qualities 
include order of accuracy, consistency, stability, dissipation, and dispersion. The 
technique involves determining the actual partial differential equation which is 
solved numerically, aside from round-off error, by the application of a given 
difference method to solve an initial-value problem. This actual partial differential 
equation is called the modified equation. It is derived by expanding each term of 
a finite-difference equation into a Taylor series and then eliminating time derivatives 
higher than first order and mixed time and space derivatives by a method described 
in Section 1. It is emphasized that, contrary to common practice, the original 
partial differential equation should not be used to eliminate these derivatives. 

Although the modified equation has infinitely many terms, in practice only the 
first several lowest-order terms need to be computed. Terms appearing in the 
modified equation which are not in the original partial differential equation 
represent a type of truncation error. These error terms allow one to determine by 
inspection the order of accuracy and consistency (Section 2) of a finite-difference 
approximation. 
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Stability analysis based on an examination of the error terms of a truncated 
version of the modified equation has heretofore been called “heuristic” and is 
outlined in Section 3. One of the primary results of this paper is to establish the 
connection between this approach and the von Neumann method for simple linear 
equations. To this end we review the von Neumann method in Section 4 and express 
the square of the modulus of the amplification factor for two-level schemes in a 
succinct rational function form. This expression provides an important link in 
understanding the relation between the number of spatial points used in an algo- 
rithm, the order of the dissipative error, and the stability bound. With the aid of 
the rational function formula, the relation and, in fact, equivalence between the 
von Neumann method and the heuristic approach is established in Section 5. This 
connection allows us to develop both necessary and sufficient conditions for 
stability based on the error terms of the modified equation. Finally, in Section 6, 
dispersive errors for convective equations are discussed. 

This article evolved from our interest in the work of several authors. In particular, 
our prescription for the derivation of the modified equation followed from a 
discussion by Richtmyer and Morton [l, p. 3311 of the Lax-Wendroff scheme for 
the hyperbolic system ut + Au, = 0. It is well-known that the Lax-Wendroff 
algorithm attenuates large-wave-number Fourier components. Richtmyer and 
Morton derived “corrective” dispersive and dissipative operators which, when 
appended to the right side of the above equation, allowed them to properly interpret 
the implicit damping of the Lax-Wendroff scheme. The term “modified equation” 
was suggested to us by our colleague H. Lomax [2], who used the modified equation 
concept in an analysis of time-continuous methods. Finally, the work of Hirt [3] 
was instructive in showing that one can deduce stability conditions by examining a 
truncated version of the modified equation. 

1. CONCEPT OF THE MODIFIED EQUATION 

The linear partial differential equations considered in this paper for initial-value 
problems will be indicated symbolically as 

@a/at) + qzi) = 0, (1.1) 

where 5$(ti) represents a linear spatial differential operator and ii is dependent 
variable which is a function of a spatial variable x and a temporal variable t. A 
specific example is the scalar convective equation: 

(afipt) + c(at.l/ax) = 0, (1.2) 

where c is a real constant. 
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To calculate a solution of a differential equation (1.1) by the method of finite 
differences, a grid of mesh points is introduced in x - t space with increments 
Ax and At and with indexing defined, e.g., by 

t=t”=nAt, x=xi=jAx. 

The partial differential equation (1.1) is replaced by a finite-difference analogue 
whose solution on the discrete mesh will be denoted by u(j Ax, n At) = uj”. As an 
example, the second-order Lax-Wendroff scheme [I] applied to the linear con- 
vective equation (1.2) is 

n+1 u3 - 24” + 2 (pS) ujn - ; (gg” (8”) #,n = 0, (1.3) 

where the conventional difference operators 

are employed as a notational convenience. The operators ~1 and 6 are defined 
individually by 

In our analysis, it will be important to maintain a distinction between an exact 
solution of a differential equation, represented by tz, and a solution of the difference 
analogue, represented by U, and so a tilde will be retained on a solution of the 
former. 

Since the goal of a finite-difference approximation is to provide a numerical 
solution to a given partial differential equation, it would seem expedient to know 
what differential equation is, in fact, being solved by a finite-difference algorithm. 
The differential equation actually solved by a difference scheme will be called the 
modified equation. 

The modified equation is derived by a two-step procedure outlined as follows. 
The first step is to expand each term of a given difference algorithm in a Taylor 
series about ujn or, more precisely, the point (x = j Ax, t = H At). Since the 
solution of a difference equation is defined only at the mesh points, one might 
question the validity of this expansion. However, for the purpose of analysis, 
we assume the existence of a continuously differentiable function U(X, t) which 
coincides at the mesh points-at least in some local sense-with the exact solution 
of the difference equation, i.e., 

24(x, t) = z4jn for x=jAx, t=nAt. 
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TABLE I 

Partial Derivatives 

I 

dC dX atL dt 

I I , 

8311 a3u 
- ^̂  

at2 ax 

Coefficients of Eq. (1.5) 
2 2 

-+At F 0 

- F &(Eq. (1.5)] I I i-$3 , At 0 At2 -4 0 

$AtI 0 1 $At2 / 2 At 
L 

& 
12 IL 

5 At & [Eq. (l.S)] 

12 2.- [Eq. (l.S)] 
At2 

at2 

-; At2 Ax [Eq. (1.5)1 

2 
$ At2 k-e [Eq. (1.5)1 

ax2 

& At3 
a3 

2 [Eq. (1.5)1 
at ax 

- f At2 

2 a3 
-f~ At3 2 @a. (1.511 

at ax 

‘+ (Ax2 - c2 
3 

At’) a [Eq. (1.5)1 
ax3 

I Sum of coefficients In each column I1lclol 01 0 lo1 0 I 



STABILITY OF FINITE-DIFFERENCE METHODS 163 

Procedure for the Calculation of the Modified Equation. 
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Additional comments on the generalization of point functions to continuous 
functions can be found in the book by Richtmyer and Morton [1, p. 301. Once the 
Taylor series expansions have been made, there follows a partial differential 
equation which includes an infinite number of both space and time derivatives. 
For example, one obtains, for the Lax-Wendroff scheme (1.3), the expansion 

At3 a4u c2 At Ax2 a*u 
+zat4- 24 Tg + *** = 0. (1.5) 

In order to obtain an equation amenable to physical interpretation (Section 3), 
we eliminate in the second step all the time derivatives appearing in the above 
equation with the exception of ut by a method to be described below. It is important 
to emphasize that the original partial differential equation (1.1) should not be used 
to eliminate the unwanted time derivatives. In general, a solution of the partial 
differential equation will not satisfy the difference equation, and since the modified 
equation is to represent the difference equation, it is clear that the original partial 
differential equation should play no role in the elimination of the higher-order time 
derivatives. Among recent articles containing modified-equation analyses differing 
from the following prescription for obtaining the modified equation are those 
by Tyler [4] and Roache [5]. 

The proper method for removing the time derivatives can most easily be demon- 
strated by example for the differential equation (1.5). The procedure requires 
repeated use of Eq. (1.5) itself. To eliminate the a2u/at2 term, we multiply Eq. (1.5) 
by the operator -(At/2) a/at and then add the result to (1.5). The resulting new 
equation has a term -(c At/2) a2u/at ax which, in turn, can be removed by applying 
the operator (c At/2) a/ax to Eq. (1.5) and adding the result to the new equation. 
This calculation can be conveniently organized into a table as illustrated in Table I. 
The first two rows list the derivatives through fourth order and their coefficients 
appearing in Eq. (1.5). The subsequent rows show the coefficients of the derivative 
terms obtained after operation on (1.5) with the differential operator shown on the 
left-most column. The table is continued until the desired number of time deriv- 
atives are deleted. The final equation is obtained by adding the coefficients in each 
column and multiplying by the derivative at the top of the column. Hence, for 
the Lax-Wendroff algorithm (1.3), we obtain the modified equation 

(A-3 - c2 &2) 2 + a-. . (1.6) 

Although the algebra required in the derivation of the modified equation is 
tedious, it is completely routine and thus lends itself to automated machine 
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computation by use of a system such as FORMAC [6] capable of performing 
algebraic operations. All the examples discussed in this paper were computed 
using a FORMAC language code on an IBM 360/67 computer. 

In general, for a given finite-difference analogue of the partial differential 
equation (1 .l), the procedure described above provides the modified equation: 

(1.7) 

The coefficient p(p) appearing in the sum denotes the coefficient of the pth spatial 
derivative. These derivative terms are not in the original partial differential equation 
and constitute a form of truncation error introduced by the finite-difference 
analogue. Aside from round-off error, the modified equation represents the exact 
partial differential equation solved by the finite-difference algorithm. This assertion 
of the equivalence of the modified equation and the difference algorithm should be 
qualified since the modified equation contains spatial derivatives of arbitrarily 
high order. Thus, strictly speaking, an infinite number of boundary conditions are 
required to define a solution. In our analysis (Sections 3 and 5), we assume spatial 
periodicity to replace the required boundary conditions. 

The essence of the modified-equation approach is that various properties of a 
finite-difference scheme can be deduced quite simply by examining a truncated 
version of the modified equation. The first two properties we consider, i.e., order 
of accuracy and consistency, are discussed in the following section. 

2. ORDER OF ACCURACY AND CONSISTENCY 

The order of accuracy of a finite-difference scheme is defined by the lowest-order 
powers of the increments dt and dx appearing in the error terms of the modified 
equation (the right side of Eq. (1.7)). Thus, according to Eq. (1.6), the Lax- 
Wendroff scheme is uniformly second-order accurate in the increments dx and dt. 
The formal order of accuracy based on the error terms of the modified equation 
is consistent with that obtained from an examination of truncation error as 
conventionally defined (see, e.g., Richtmyer and Morton [I, p. 191). Roughly speaking, 
the truncation error is a measure of how well a solution of the differential equation 
satisfies the difference equation, while the modified equation provides a measure 
of how closely the difference equation models the differential equation. 

From the modified-equation viewpoint, a finite-difference scheme is said to be 
consistent with a given partial differential equation if the right side of Eq. (1.7) 
tends to zero as dt and dx approach zero in an arbitrary manner. Thus, for 
example, it is obvious from the modified equation (1.6) that the Lax-Wendroff 
scheme is consistent with the convective equation (1.2). If, by some special relation- 
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ship between At and Ax, the right side of Eq. (1.7) does not tend to zero as the 
increments vanish, then a finite-difference scheme is said to be inconsistent 
with the original partial differential equation. In this situation, the modified 
equation yields directly the differential equation with which the difference scheme 
is consistent. 

3. HEURISTIC STABILITY THEORY 

In this section, we briefly describe a heuristic stability theory based on the 
modified equation (1.7). The connection between this heuristic description and the 
von Neumann method will be established in Section 5. 

The modified equation (1.7) can be rewritten as 

where the linear spatial operator 9&) has been moved to the right side and 
included in the sums on the right by appropriate redefinition of the coefficients 
p(p). If we assume an elementary solution for Eq, (3.1) of the form 

24(x, t) = eateikx (3.2) 

where the wave number k is real and 01 = a + ib is complex, then a and b must 
satisfy 

a = -f (- 1)” k2Pp(2p), 
84 

(3.3) 

b = f (-1)” k2”+$(2p + 1). 
3=0 

(3.4) 

The elementary solution (3.2) damps or decays as a function of time if a < 0, or 
grows exponentially if a > 0. There are difference methods for the convective 
equation (1.2) without inherent damping in which case a = 0 (see, e.g., Roberts 
and Weiss [7]). Subsequently, we will limit our attention to difference schemes with 
inherent damping, and, as a consequence, there exist nonvanishing even-order 
coefficients I in the modified equation. 

If the modified equation is to be of practical value, then one should be able to 
deduce useful stability information by examining a truncated version containing 
only the first few error terms. Equation (3.3) shows that in the small-wave-number 
limit, k + 0, we should be able to neglect all the terms except the lowest-order 
nonzero coefficient, say, I. Thus, in order that a -C 0 for small k, it follows 
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that a necessary (heuristic) condition for the stability of a finite difference scheme is 
that 

(-1)1-‘p(2r) > 0. (3.5) 

As an application of the above stability condition, consider the modified 
equation (1.6) associated with the Lax-Wendroff scheme. The lowest even-order 
derivative is of fourth order, and thus by Eq. (3.5) its coefficient ~(4) should 
be negative for stability. Thus we obtain the well-known stability condition / v 1 < 1 
for the Lax-Wendroff scheme where 

v = c At/Ax (3.6) 

is defined to be the Courant number. Actually, this example was a fortuitous choice 
as will become apparent in Section 5. 

As an example of a higher-order algorithm for the solution of the convective 
equation (1.2), we examine the linear version of an algorithm due to Rusanov [S] 
and Burstein and Mirin [9] which is uniformly third order in both the time and 
spatial increments. In terms of the difference operators defined by Eq. (1.4) this 
scheme can be written as 

,;+1 zzz uin - v(p8) [l - ; S”] ujn + v”(P) [; + f 621 Uj” 

- f (pP) u,” - & (84) up. (3.7) 

The last term on the right side is a fourth-order spatial difference operator with 
a multiplicative parameter w, which was appended to the scheme to achieve 
numerical stability. According to the von Neumann analysis [9], the algorithm is 
stable if 

4v2 - v4 < w < 3 and /VI < 1. (3.8) 

The modified equation corresponding to this difference algorithm is 

!?Z++ gg (w - 4v2 + v4) g 

+ gg [--5w + (4v2 + I)(4 - vy1 g + -.- . (3.9) 

If the stability criterion (3.5) is applied to the above modified equation, we obtain 
only the left-most inequality of Eq. (3.8), and so we have obtained only partial 
information about the complete stability bound. In other situations, in particular 
when applied to heat-equation algorithms, the heuristic stability condition yields 

5WI4/2-5 
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no obvious information about stability. Since condition (3.5) was obtained from 
a plausibility argument in the small-wave-number limit, the insufficiency of the 
condition is certainly no surprise. 

The largest wave number that can be resolved by a finite-difference scheme is 
k = n/Ax. The determination of the stability bound in this limit is of critical 
importance since Fourier components corresponding to the largest wave numbers 
tend to be the least stable. It does not appear feasible to use the modified equation 
to predict a stability bound when k - 0(1/4x) for the following reason. For 
a finite-difference analogue of either the simple convective equation where 
p(2p) - O(AX~~-~) if At - O(dx), or the heat equation where I - O(LW~-~), 
if At - O(Aa?), each term of the series (3.3) is of the same order if k - O(l/Ax). 
Hence, one should hardly expect to obtain a sensible bound from a truncated version 
of the modified equation. However, we will describe in Section 5 a stratagem to 
circumvent this apparent difficulty. 

4. SQUARE OF THE AMPLIFICATION FACTOR MODULUS AS A RATIONAL FUNCTION 

In this section, we briefly review the von Neumann method for two-level schemes 
and give a formula for the square of the amplification factor modulus in the form 
of a rational function. The particular structure of this formula provides the key to 
understanding the relation between the number of spatial points used in an 
algorithm, the order of the dissipative error (to be defined), the stability bound for 
the method, and the connection between the heuristic condition (3.5) and that 
found by the von Neumann method. 

A two-level difference analogue of the differential equation (1 .l) can be written in 
the form 

where md , m, , nL , and nr are nonnegative integers. The condition 

F Be = : A, (4.2) 
a=-q q=-nt 

is necessary for consistency. The von Neumann stability procedure [l] consists 
of replacing each term uin of the difference equation (4.1) by the kth Fourier com- 
ponent of a harmonic decomposition of ujR, i.e., by u”(k) exp(ikj Ax), where v”(k) 
denotes the kth Fourier coefficient. The Fourier coefficients at n + 1 and n are 
related by 

v’*‘(k) = g(k) u”(k), (4.3) 
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where g(k) is the amplification factor of the finite-difference method. In general, 
this factor is complex and can be expressed as 

g(k) = I gWl ei*. (4.4) 

Since the two-level algorithm (4.1) has only one dependent variable, a necessary 
and sufficient condition for stability is [l, p. 721 

I g(k)1 G 1 (4.5) 

for all values of k. If 1 g(k)1 = I for all k, then the difference scheme is said to be 
nondissipative or marginally stable, and if 1 g(k)1 > 1 for some k, the scheme is 
unstable. Henceforth, we restrict our attention to algorithms where ) g(k)/ is not 
identically one. 

For two-level schemes, it can be shown (see Appendix) that 1 g(k)j2 can always 
be expressed as the following rational function: 

where 
) g(k)12 - 1 = -4z’S(z)/P(z), 

z = sin2(8/2), t?=kAx, 

S(z) = i (YiZi, %J = S(0) # 0, 
i=O 

(4.6a) 

(4.6b) 

(4.6~) 

Here, r is a positive integer and s is a nonnegative integer, and they are related by 
the formula 

r+s=m, (4.7a) 
where 

m = max(m, + m, , ne + nJ (4.7b) 

is determined by the number of spatial grid points to the left and right of xj used 
in the algorithm (4.1). The integer d of Eq. (4.6d) is nonnegative and d = m, + mc . 
In the special case of an implicit scheme where 

mt + m, = nt -I n, and A-,&z, = kr&n~ 3 (4.8) 

the order of the polynomial S(z) as predicted by Eq. (4.7a) is decreased by at least 
one (see Appendix Eqs. (A.2)-(A.4)). An example of this situation is algorithm (5.7) 
of Section 5. If a scheme is explicit, then all the coefficients B* of Eq. (4.1) are zero 
with the exception of B. and P(z) = 1. 
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The polynomial S(z) determines the stability of a given difference scheme since 
by comparing Eq. (4.6a) with (4.5) and using the fact P(z) > 0, it follows that a 
necessary and sufficient condition for stability is 

w9 > 0, S(z) > 0 for O<z<l. (4.9) 

As an example of the polynomial form (4.6) for an explicit scheme, consider the 
explicit third-order scheme (3.7). This method uses the five points xi , x9*+, , and 
x~+~ to advance the solution one time step and hence m = 4. From a direct 
but tedious calculation of / g(k)j2, one finds that r = 2 and S(z) is the following 
quadratic polynomial [8]: 

S(z) = g.tJ - 49 + v”) - $[2v2(1 - v”)” + 3v2(UJ - v2 - 2)] z 
+ *[4v2(1 - v2)2 - (w - 3v2)2] 22. (4.10) 

The stability constraint (3.8) on the parameter w follows directly by evaluating S(z) 
in the small- and large-wave-number limits, i.e., S(0) and S(1). The corresponding 
bound on v is 0 < 1 v j < 1 and 1/J < 1 v I. Strictly speaking, this latter possible 
stable range for v cannot be excluded solely by an examination of the small- and 
large-wave-number limits. 

Schemes for hyperbolic equations with inherent damping may be divided into 
two main categories as follows. If S(z) > 0 for 0 < z < 1, then the difference 
scheme is said to be strongly dissipative of order 2r where r is the positive integer 
appearing on the right of Eq. (4.6a). If S(0) > 0, S(z) 3 0 for 0 < z < 1, and 
S(1) = 0, the scheme is said to be weakly dissipative of order 2r. A strongly 
dissipative scheme is characterized by damping of all Fourier components corre- 
sponding to nonzero wave numbers and, in particular, the ones with the largest 
wave numbers. But a weakly dissipative scheme need not damp all components and 
also the damping tends to zero in the large-wave-number limit since S(1) = 0. 
Our motivation for defining the order of the dissipation to be 2r is that in the small- 
wave-number limit 

( g(k)1 = 1 - 2S(O)(k Llx)2’/4’ + O[(k 4x)2’7+1)], k Ax -+ 0, (4.11) 

which follows by expanding Eq. (4.6a) for small z. Furthermore, for a strongly 
disspative scheme, one can show directly from Eq. (4.6) without a small-wave- 
number assumption that 

I gw < 1 - ce2T, (4.12) 

where C is a positive constant independent of 8. The notion of a strongly dissi- 
pative scheme as defined above agrees with Kreiss’ definition ‘[I] of a dissipative 
scheme. 
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5. RELATION BETWEEN THE VON NEUMANN METHOD AND HEURISTIC 
STABILITY THEORY 

The precise relation between the (heuristic) stability condition (3.5) of Section 3 
and the von Neumann theory of the last section can be clarified by the following 
discussion. 

The elementary solution (3.2) of the modified equation (3.1) has the ampli- 
fication factor 

gm(k) = pAt = eaAteibAt 
(5.1) 

for one time increment. But since the modified equation represents the exact partial 
differential equation solved by a finite-difference scheme, the amplification factor 
(5.1) must equal the amplification factor (4.4) of the difference scheme. Thus, 

g(k) = g,(k), (5.2) 
and by comparison 

I &)I = eaAt, (5.3a) 
,i6 = eibAt (5.3b) 

Thus from Eqs. (3.3) and (3.4), it is clear that the modulus of g(k) is related to the 
even-order coefficients I of the modified equation, and the phase shift 4 is 
related to the odd-order coefficients. Phase-shift relations will be considered in 
Section 6; in the present section we concentrate on stability. 

We first consider the small-wave-number limit. Let ~(2p = 2r) be the lowest- 
order nonzero coefficient appearing on the right side of Eq. (3.3). If one expands 
exp(u dt) and retains only the lowest-order term in k and then compares with the 
limiting form (4.1 I), there follows the relation 

/.&(2r) = ((- l)r-f/2’2’-1))(4X2r/df) S(0). (5.4) 

Since a necessary condition for stability is S(0) > 0, the lowest even-order non- 
vanishing coefficient I must satisfy 

(- l>r-1/&(2r) > 0. (5.5) 

But this inequality is precisely the stability condition (3.5) obtained by a heuristic 
argument. 

It is now obvious that the simplest algorithms to analyze using the modified 
equation are ones for which S(z) = constant = S(0). In this case, inequality (5.5) 
is both necessary and sufficient for stability. An example of this situation is the 
Lax-Wendroff algorithm (1.3) whose amplification factor modulus is 

I g(k)? - 1 = -4zas(z); S(z) = lJy1 - v2), (5.6) 
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where S(z) is a constant independent of z. As a second example, consider the 
Crank-Nicholson algorithm [l] 

.;+1 = ujn + (u &/2dx2)[(62) u;+l + (82) up] 

for the heat equation fi, = aii,, , 0 > 0. The modified equation is 

(5.7) 

au/at = a(a2u/ax2) + (CT M/12) a%@* + a*.. (5.8) 

The coefficient of the lowest even-order derivative of the modified equation is 
~(2r = 2) = u so r = 1. By comparing this algorithm (5.7) with the general two- 
level formula (4.1), one can easily verify that this scheme is a special case covered 
by Eq. (4.8) where me + m, = m = 2. Thus, the order of the polynomial S(z) 
must be at least one order lower than given by formula (4.7a) and consequently 
s = 0 and S(z) is a constant. But by Eq. (5.4), S(0) is given by 

/L(2) = u = (1/2)(LW/Llt) S(0) > 0. 

Here we have the curious result that the unconditionally stable nature of the algo- 
rithm is predicted by the coefficient of u,, which is not an error term of the modified 
equation. 

If one calculates the modified equation for a given algorithm, then the order s 
of the polynomial S(z) can be determined directly from Eq. (4.7a) since m is known 
and r is determined by the lowest-order nonvanishing coefficient p(2r). For example, 
in the case of third-order algorithm (3.7), r = 2 since in the modified equation (3.9) 
~(4) is the lowest even-order nonzero coefficient and m = 4 by Eq. (4.7b). Hence, 
s = 2, and thus we know that S(z) is a quadratic and we cannot expect more than 
a necessary condition by applying condition (5.5). 

At the end of Section 3, we argued that it did not appear feasible to determine 
from the modified equation the stability bound in the large-wave-number limit, 
i.e., the stability bound imposed by S(1). However, if we can establish a relation 
between the even-order coefficients I of the modified equation and the coeffi- 
cients 01~ of the polynomial S(z), then we could use the modified equation to obtain 
a complete stability analysis. This can in fact be done as follows. Rewrite Eq. (5.3a) 
as 

1 g(k)/2 = f?2QAt, (5.9) 

and replace the left side of this equation by (4.6a) and the parameter a in the expo- 
nential by Eq. (3.3). Then expand both sides in powers of 0 = k dx and compare 
coefficients. 

In order to demonstrate this approach, we examine explicit schemes where 

S(z) = a0 + %Z, %J # 0. (5.10) 
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This linear case actually encompasses a large number of algorithms because if the 
order s of the polynomial S(z) is greater than unity, this generally indicates that 
more spatial points are used in the algorithm than necessary for the order of 
accuracy achieved. If both sides of Eq. (5.9) are expanded as described above, we 
find for t = 1 

w = (8 Wx4)KW3) P(2) - &Y2) - A4)1, r= 1, (5.11) 

andforr >, 2 

S(1) = ((-4)p+’ At/(2 Ax(2r+2) ))[(1/12)(3 + r> AX2p(2r) - k42r + 31, r 3 2. 
(5.12) 

In either case, S(0) is given by Eq. (5.4.) For linear S(z), it is obvious that 
S(0) > 0 and S(1) > 0 are both necessary and sufficient for stability since 
S(z) 2 ~n(W>, S(l)). 

In a recent paper, Morton [lo] considered the effect on numerical stability when 
the viscous term oCZi,, is added to the right side of convective equation (1.2) yielding 

(acqat) + c(aqax) = o(a%/ax2), u > 0. (5.13) 

The explicit finite-difference algorithm he analyzed was 

.;+1 = ujn - v(p8 - (V/2) 62) ujn + y(S”) ujn, 

where v = c At/Ax and y = u At/A?. The modified equation is 

(5.14) 

g++ a224 
??- cdx2(1 _ a324 

6 v2 - 64 ax3 

+ & [2y(l - 6~) + 3v2(v2 + 4y - I)] 2 + ... . (5.15) 

The lowest nonzero even-order coefficient ~(2) = u is positive for arbitrary Ax 
and At and consequently we learn nothing about the stability of the algorithm from 
the stability condition (5.5). But we can still use the modified equation to determine 
the stability bound. Since the algorithm uses the points xi , Q.. , the integer m 
equals 2 and from Eq. (4.7a) s equals 1; thus S(z) is linear. By applying formula 
(5.11) and using values of ~(2) and ~(4) determined from the modified equation 
(5.15), we find 

S(1) = (v” + 2y)(l - v2 - 2y), 

and consequently a necessary and sufficient condition for stability is 

vz+ 2y < 1. 

(5.16) 

(5.17) 
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If v is set to zero in the difference algorithm (5.14), one gets the explicit scheme for 
the heat equation, and from inequality (5.17), there follows the well-known 
stability bound y < l/2. 

6. PHASE ERROR ANALYSIS FOR CONVECTIVE SCHEMES 

A stable numerical solution of the scalar convective equation (1.2) computed 
from a finite-difference scheme will generally exhibit errors in both amplitude 
(dissipation) and phase (dispersion). The modified equation provides a natural 
resolution of these errors since even-order spatial derivatives correspond to 
dissipative effects and odd-order spatial derivatives are related to dispersive effects. 

Phase shift errors resulting from a finite-difference solution can be analyzed by 
the von Neumann method as follows. A Fourier expansion of an exact solution 
of Eq. (1.2) has elementary modes exp[ik(x - ct)], and thus for one time-increment 
dt, the amplification factor is 

ge(k) = e--At. (6.1) 

The phase shift per time step is 

+e = -ck At = -vtl, (6.2) 

where 0 = k Ax and v is the Courant number c At/Ax. Consequently, the relative 
phase shift error or velocity dispersion per time increment is given by the ratio 
614e 3 where rj is computed from the amplification factor (4.4) of the finite- 
difference scheme. Figure 1 is a plot of the phase error +/& as a function of 0 for 
the second-order Lax-Wendroff scheme (1.3) and the third-order method (3.7) for 
v = 0.3 and 0.8 and several values of the parameter w. If the phase error exceeds 1 
for a given value of 8, the corresponding Fourier mode will have a wave speed 
exceeding the exact solution with the converse being the case for a phase error less 
than 1. 

FIG. 1. Comparison of phase error Q/4, for second- and thud-order methods for Y = 0.3 
and Y = 0.8. 
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The phase shift 4 for a difference algorithm in terms of the odd-order coefficients 
of the modified equation is given by 

4 = At i (-l)P k2~+942p + 1) (6.3) 
l-0 

which follows from Eq. (5.3b) with b given by the sum (3.4). Since any sensible 
difference analogue of the convective equation (1.2) will have a modified equation 
with ~(1) = -c, the above equation can be rewritten as 

1 - f f (-1)~ kQp(2p + 1). 
P4 

Let ~(2q + 1) be the lowest-order nonvanishing coefficient in the summation of 
Eq. (6.4). For small wave numbers, one can neglect all but the lowest-order term 
and, consequently, 

f = l _ t--1)* k2u p(2q + 1) + O[(k Ax)~‘~+“I, kAx-+O. (6.5) 
e C 

On the basis of this limiting form, a convective difference scheme is said to be 
dispersive or order 2q, where q is the positive integer appearing in the above 
equation. 

According to the limiting form (6.5), a Fourier mode for small k will lag or have 
a lower wave speed than the exact mode if 

K--1W4 P& + 1) > 0 (phase lag). (6.6) 

Although this inequality is strictly true only for small wave numbers, it provides 
a practical criterion for judging whether a particular algorithm has a dominant 
leading or lagging phase error. From the modified equation (1.6) for the Lax- 
Wendroff scheme, -~(3)/c is positive in the stable range, indicating a predominant 
lagging phase error even though $/& can exceed 1 for large wave numbers as 
illustrated in Fig. 1 for v = 0.8. 

As an example of a second-order scheme with a leading phase error, consider 
the “upwind” scheme for c > 0 

uj n+l = Ujn - V(l + $V) VUjn + *V2V2Uj”, c > 0, (6.7) 

where V is the backward difference operator defined by 
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The modified equation is 

?!++ ~(1--)(2--)~--~(l--)e(2--)~+.... (6.8) 

By virtue of Eq. (6.6), this upwind scheme has a leading phase error for 0 < u < 1. 
Fromm [ll] based his method of zero-average phase error on the observation 

that a reduction of dispersion should occur by using a linear combination of 
methods of opposite phase error. If we represent the Lax-Wendroff scheme (1.3) 
as $+l z L,(u,“) and the upwind scheme (6.7) by ~47~~ = L,(@ and form the 
average 

,;+1 = WL + 44) UT, 

we obtain the one-dimensional version of Fromm’s scheme. The modified equation 
for Fromm’s scheme is a simple average of Eqs. (1.6) and (6.8) corresponding to 
the Lax-Wendroff and upwind schemes. The reduction in phase error is apparent 
by comparing the coefficient ~(3) of the three methods for 0 < Y < 1. 

The third-order method (3.7) can have either a predominantly leading or lagging 
phase error, depending on the choice of the parameter w as illustrated in Fig. 1. 
A difficulty with the third-order method is finding a practical criterion for choosing 
the free parameter in the stable range (3.8). We have shown, in a recent paper [12], 
that the modified equation (3.9) can be used to advantage to provide such a 
criterion. If it is desirable to minimize dispersive error, then w is selected so that 
the coefficient of the lowest-order odd derivative on the right side of Eq. (3.9) is 
zero, i.e., 

w = (4V2 + 1)(4 - V2)/5. (6.9) 

A more detailed analysis including phase error plots and numerical examples 
for both linear and nonlinear problems is presented in Refs. 12 and 13. 

In a recent paper, Taylor et al. [14] evaluated several methods for integrating the 
one-dimensional inviscid gasdynamic equations. By numerical experiment, they 
found for Rusanov’s [8] third-order method that the best results were obtained 
for v = 0.7 and w = 2.0. For a Courant number of 0.7, the minimum dispersion 
formula (6.9) yields w = 2.08. This predicted value certainly adds credence to 
the practical utility of the modified equation analysis. 

7. SUMMARY OF THE MODIFIED-EQUATION APPROACH 

To summarize the modified-equation method of evaluating a finite-difference 
approximation to a simple partial differential equation, we analyze the following 
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second-order explicit algorithm proposed by Crowley [15] for the convective 
equation (1.2): 

uT+~ = Uj” - v(,uS) ujn + (~‘/2)(~~8~) ~j” - (l/8) v’(/LU~~) ujn, 

where Y = c At/Ax. The corresponding modified equation is 

a624 (4 - G)(l - 69) ax6 

+ c4 Y2iAf3 (4 - v”) g + /A(7) g 

+ c4$+6Ar3(4-V2)?$+ . . . . (7.1) 

The lowest-order error term is 

~(3) = -(c/24)(4 Ax2 - c2 At2), 

so the scheme is uniformly second-order accurate in dx and At. The error terms on 
the right side of the modified equation (7.1) tend to zero as At and dx approach 
zero, so clearly the scheme is consistent with the convective equation (1.2). The 
lowest-order even-derivative coefficient of the modified equation is ~(6 = 2r), 
so r = 3. From inequality (5.5), a necessary condition for stability is ~(6) > 0, and 
hence a bound on the Courant number is 

O<lvJ <2. (7.2) 

The Crowley algorithm uses data at the five spatial points Xi , x~+~ , and xj+2 to 
advance the solution one time step, and thus the integer m defined by Eq. (4.7b) is 4. 
Then by Eq. (4.7a), s = 1 and the polynomial S(z) is linear, and, consequently, 
S(1) can be determined by formula (5.12). We find that S(1) = 0, so inequality 
(7.2) is both necessary and sufficient for stability. By the definition in Section 4, the 
scheme is weakly dissipative of order 6 for v in the range (7.2). Utilizing inequality 
(6.6), it follows that the phase error will be predominantly lagging. Finally, since 
the scheme is consistent and stable for 1 v ( < 2, u will converge uniformly to u” 
as At tends to zero for a fixed constant 1 v ) = / c ) d t/Ax -=z 2 (Lax equivalence 
theorem [l]). 

CONCLUDING REMARKS 

The modified-equation approach has been shown to be a viable technique for 
analyzing linear finite-difference approximations to partial differential equations. 
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Since the algebraic operations involved in the analysis are readily amenable to 
automated machine calculation by a language such as FORMAC [6], the technique 
can be applied with little effort on the part of the user. We have found it to be 
particularly valuable in analyzing the relative merits of proposed schemes or in 
constructing new ones. 

We believe the modified equation concept can be used as an effective didactic 
device since one quite often has, from experience, more physical intuition about the 
properties of simple partial differential equations than for those of difference 
equations. Thus it can be applied effectively to give insight into the nature and 
control of dispersive and dissipative errors. 

Finally, we should emphasize that although the stability analysis of this paper 
has been confined to linear problems, Hirt [3] has argued that a criterion similar 
to the heuristic necessary condition (3.5) is applicable to nonlinear equations with 
variable coefficients. In a recent paper, Lerat and Peyret [16] have used a nonlinear 
modified equation analysis to demonstrate that the oscillations observed behind 
a shock front are not always due to dispersive error but are also attributable to a 
small local nonlinear instability. 

APPENDIX: DERIVATION OF EQUATION (4.6) 

Our original derivation of formula (4.6) was somewhat cumbersome. The 
following simplified proof was suggested to us by Marcel Vinokur. The ampli- 
fication factor for the two-level algorithm (4.1) is 

g(k) = : Api@/ z B,eiqe, (A-1) 
4=-7&t e=-mt 

where 8 = k dx. The square of the modulus of the sum in the numerator can be 
expressed as 

1 c Aqeiqe (- = c c A,A, cos(q - p)f?. 

But since cos (9 = 1 - 22, where z = sin2(8/2), one finds by using a trigonometric 
multiple angle formula that 

cos n0 = i Dizi, DO= 1, D, = (-1)” 22n-1. 
i=O 
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If we define w = nc + n, , then 

nr 2 w 
1 A,eiQO 1 = z. yizi, yo = 1, yw = C-1)” 22’“A-,eA,,, , (A.2) 

q=-nl 

where without loss of generality we have normalized the coefficients A, such that 
the consistency condition (4.2) is C A, = 1. Hence, one obtains for [ g(k)12 the 
formula 

where 

I ml2 = to Y&/i” w = 1 + i. (Yi - Pi) q$o PiZi, 64.3) 

d = mt -+- m, , m = max(d, w), PO = 1, fld = (- l)d 2adB+,dBmr . (A.4) 

Finally, if r is a positive integer defined by 

Yi = Pi for i < r, Yi # Pi for i = r, 

and if a coefficient ai is defined as -4c+ = yi+r - pi+, then Eq. (A.3) can be 
rewritten as Eq. (4.6) of the text. 
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